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LSBert: Lexical Simplification Based on BERT
Jipeng Qiang , Yun Li, Yi Zhu, Yunhao Yuan, Yang Shi , and Xindong Wu , Fellow, IEEE

Abstract—Lexical simplification (LS) aims at replacing complex
words with simpler alternatives. LS commonly consists of three
main steps: complex word identification, substitute generation, and
substitute ranking. Existing LS methods focus on the contextual in-
formation of the complex word in the last step (substitute ranking).
However, they miss out the following two facts: (1) The word com-
plexity of a polysemous word is very closely related to its context; (2)
The step of substitute generation regardless of the context will in-
evitably produce a large number of spurious candidates. Therefore,
we propose a novel LS system LSBert based on pretrained language
model BERT to address the aforementioned issues, which is capable
of making use of the wider context when both identifying the words
in need of simplification and generating substitute candidates for
the complex words. Specifically, LSBert consists of a network
for complex word identification by fine-tuning BERT and a network
for substitute generation based on BERT. Experimental results
show that LSBert performs well in both complex word identifi-
cation and substitute generation, achieving state-of-the-art results
in three benchmarks. To facilitate reproducibility, the code of the
LSBert system is available at https://github.com/qiang2100/BERT-
LS.

Index Terms—Lexical simplification, BERT, Complex word
identification, Sentence simplification.

I. INTRODUCTION

L EXICAL Simplification (LS) is the process of replacing
a target word in a sentence with simpler alternatives of

equivalent meaning, which is useful for many natural language
processing tasks like text simplification and paraphrase gen-
eration [1], [2]. LS is an effective way of simplifying a text
because some work shows that those who are familiar with the
vocabulary of a text can often understand its meaning even if
the grammatical constructs used are confusing to them. The
LS system is commonly framed as a pipeline of three main

Manuscript received February 24, 2021; revised August 24, 2021; accepted
September 3, 2021. Date of publication September 9, 2021; date of current
version October 6, 2021. This work was supported in part by the National
Natural Science Foundation of China under Grants 62076217 and 61906060,
and in part by the Program for Changjiang Scholars and Innovative Research
Team in University (PCSIRT) of the Ministry of Education, China, under Grant
IRT17R32. This manuscript is an extended version of the conference paper, titled
Lexical Simplification with Pretrained Encoders, published in the 34th AAAI
Conference on Artificial Intelligence (AAAI), New York, February 7-12, 2020.
The associate editor coordinating the reviewof this manuscript and approving it
for publication was Dr. Jianfeng Gao.

Jipeng Qiang, Yun Li, Yi Zhu, Yunhao Yuan, and Yang Shi are with
the Department of Computer Science, Yangzhou, Jiangsu, China (e-mail:
qjp2100@gmail.com; liyun@yzu.edu.cn; qjp2100@163.com; yhyuan@yzu.
edu.cn; Shiy@yzu.edu.cn).

Xindong Wu is with the Key Laboratory of Knowledge Engineering with
Big Data (Hefei University of Technology), Ministry of Education, Hefei,
Anhui 230009, China, and also with the Mininglamp Academy of Sciences,
Minininglamp, Beijing 100864, China (e-mail: xwu@hfut.edu.cn).

Digital Object Identifier 10.1109/TASLP.2021.3111589

steps: Complex Word Identification (CWI), Substitute Gener-
ation (SG), and Substitute Ranking (SR). CWI is often treated
as an independent task [3]. Existing LS methods mainly focus
on the two steps: SG and SR [4], [5]. In this paper, we aim to
construct a complete system including CWI, SG, and SR. We
will discuss these two issues separately.

To solve the problem of CWI, there is a specialized com-
petition called CWI 2018 shared task [6], in which the best
teams generally adopted some ensemble-based techniques, such
as CAMB provided by Gooding and Kochmar [7] based on
Random Forest. These ensemble-based methods employ a large
number of features to capture the complexity of a word. How-
ever, they are unable to consider the context of the target word
when identifying complex words, thus failing to predict word
complexity for polysemous words as well as words in various
metaphorical or novel contexts. For example, “molars” is con-
sidered as a complex word in “Elephants have four molars..., ”
but it is considered as a simple word in “... new molars emerge
in the back of the mouth”. Because there are many familiar
words around “molars” in the second sentence, the meaning of
“molars” can be inferred from these familiar words. To consider
the context of the target word, one recent method [8] employs a
bi-directional LSTM, treating CWI as a sequence labeling task.
However, this method is worse than CAMB, because existing
training datasets for the CWI task only contain a few hundred
samples that are not enough to train a good neural network
modeling. In most cases, pretrained language models have
been employed as encoders for sentence-level natural language
processing problems involving various classification tasks [9].
In this paper, we will examine the influence of the pretrained
language model on CWI.

The popular LS systems still predominantly use a set of
rules for replacing complex words with their frequent synonyms
from carefully handcrafted databases (e.g., WordNet) [10] or
automatically induced from comparable corpora [11] or para-
phrase database [12]. The following work utilizes word em-
bedding models to extract substitute candidates for complex
words. Given a complex word, the top high similarity words
are selected as substitute candidates from the word embedding
modeling whose vectors are closer in terms of cosine similar-
ity with the complex word [3], [13], [14]. Recently, the LS
system REC-LS attempts to generate substitute candidates by
combining linguistic databases and word embedding models.
The above methods consider the contextual information on the
subsequent step (SR) to decide whether the substitute candidates
are suitable for the context of the complex word. This will bring
a serious problem. If substitute candidates generated by these
methods contain a large number of spurious candidates, these
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Fig. 1. Comparison of substitute candidates of complex words. Given one
sentence “John composed these verses.” and complex words ‘composed’ and
‘verses,’ the top three simplification candidates for each complex word are gen-
erated by our method LSBert and the state-of-the-art two baselines (Glavaš [13]
and REC-LS [4]). The simplified sentences by the three LS methods are shown
at the bottom.

candidates will seriously confuse the SR step of the LS method.
For example, in an extreme case, if simpler alternatives of the
complex word do not exist in substitute candidates, the SR step
of LS is meaningless.

Therefore, the context of the complex word also plays a central
role in fulfilling the step of substitute generation. In contrast to
the existing LS methods that only consider the context in the
last step (SR), we present a novel complete LS system LSBert,
which incorporates the context into each step of LS system. As
word complexity depends on context, LSBert adopts a sequence
labeling method to identify complex words by fine-tuning pre-
trained language modeling BERT [9]. To produce a suitable
substitute for the complex word, we also explore the potential
of BERT. More specifically, we mask the complex word w of
the original sentence S as a new sentence S ′, and concatenate
the original sequence S and S ′ for feeding into BERT to obtain
the probability distribution of the vocabulary corresponding to
the masked word. Then we choose the top probability words as
substitute candidates. LSBert simplifies one word at a time and
is recursively applied to simplify the sentence by taking word
complexity in context into account.

Here, we give a simple example shown in Fig. 1. For complex
words ‘composed’ and ‘verses’ in the sentence “John composed
these verses.,” the top three substitute candidates of the two
complex words generated by the state-of-the-art LS systems [4],
[13] are only related with the complex words itself regardless of
the context. For example, the candidates “consisting, consists,
comprised” are generated by Glavaš [13] for the complex word
“composed,” and the candidates “framed, quieted, planned”
are produced by REC-LS [4]. After choosing the top 10 can-
didates and matching the POS-tag of the original word, the
simplified sentence generated by Glavaš is “John consisted these
poems”. The simplified sentence generated by REC-LS is “John

composed the verses,” because it prefers to save the original
words when the substitutes cannot fit for the sentence. We can
see that the meaning of the original sentence simplified by Glavaš
is changed, and REC-LS does not make the right simplification.
LSBert generates the appropriate substitutes and achieves its aim
that replaces complex words with simpler alternatives.

In summary, the major contributions of this paper are:
1) We propose a novel CWI method by fine-tuning BERT

to identify complex words. Experiments results show the
effectiveness of our method on three CWI corpora.

2) We propose a novel method that can take full advantage of
BERT to generate and rank substitute candidates. To our
best knowledge, this is the first attempt to apply BERT
for LS. Experimental results show that LSBert obtains
obvious improvement compared with the baselines.

3) The proposed LSBert is a simple, effective, and com-
plete LS system: (Simple) many steps used in existing
LS systems have been eliminated from our system, e.g.,
morphological transformation; (Effective) it obtains new
state-of-the-art results on three benchmarks; (Complete)
LSBert recursively simplifies all complex words in a sen-
tence without requiring additional tools.

The rest of this paper is organized as follows: In Section 2,
we introduce the related work of lexical simplification; Section
3 describes the system LSBert; In Section 4, we describe the
experimental setup and evaluate the proposed method LSBert;
Finally, we draw our conclusions in Section 5.

II. RELATED WORK

Existing complex word identification (CWI) methods can
be classified into five classes. (1) Simplify everything meth-
ods [9], [15] are the earliest CWI methods, which assume that
all words should be simplified. However, it is rarely used now. (2)
Threshold-based methods [15], [16] treat these words exceed-
ing the threshold as complex words, in which the commonly
used threshold metrics are word frequency or word length.
Threshold-based methods are intuitive and easy to implement.
However, a single simplicity feature cannot distinguish complex
words very well. (3) Lexicon-based methods [10], [18] assume
that these words belonging to the lexicon of complex words or
simple words are regarded as complex words or simple words.
But, constructing the lexicons of complex or simple words is
very expensive. (4) Classifier-based methods [6], [7] are the
best-performing systems in CWI 2018 shared task, especially
ensemble-based classifier methods. However, for the type of
methods, there is a huge demand for feature engineering. (5)
Sequence labeling-based method [4] treats CWI as a sequence
labeling task, and adopts a bi-directional LSTM neural network
modeling. It effectively solves the bottleneck of those feature
engineering methods. However, the sequence labeling-based
method is worse than the ensemble-based method, because
existing training datasets only have a few hundred samples that
are not enough to train a neural network modeling very well.

Existing lexical simplification (LS) methods mainly focus
on substitute generation and substitute ranking, which can be
divided into three classes. (1) Linguistic-based methods [12],
[19], [20] are the popular LS methods, which generate the
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substitute candidates from WordNet or other linguistic
databases. However, broad coverage versions of such resources
are not available for most languages, and building them is ex-
pensive and time-consuming. (2) Rule-based methods [21]–[23]
extract paraphrased from articles aligned at document level as
possible substitute candidates. For example, some methods [21]
are based on the edit history of Simple English Wikipedia
compared with English Wikipedia. Pavlick and Nenkova [12]
tried to extract rules from PPDB that is a large database of
paraphrases extracted from bilingual parallel corpora. The main
limitation of rule-based methods relies heavily on parallel cor-
pora. (3) Embedding-based methods [3], [13] based on word
embeddings extract the top words as substitute candidates whose
vectors are closer in terms of cosine similarity with the complex
word. REC-LS [4] attempts to generate substitutes from mul-
tiple sources, e.g., WordNet, Big Huge Thesaurus1 and word
embeddings.

After examining existing LS methods ranging from rules-
based to embedding-based, the major challenge is that they
generate simplification candidates for the complex word regard-
less of the context of the complex word, which will inevitably
produce a large number of spurious candidates that confuse the
systems employed in the subsequent steps.

Our method exploits recent advances in BERT [9] to generate
suitable simplifications for complex words. Our method gen-
erates the candidates of the complex word by considering the
whole sentence that is easier to hold cohesion and coherence
of a sentence. The previous version was published in artificial
intelligence conference (AAAI) [24], which only focused on
substitute generations based on BERT. One recent work based
on BERT [25] was almost simultaneously proposed with our pre-
vious version, which also only focused on substitute generations.
Instead of masking the complex word of the input sentence, the
proposed method [25] applies the dropout mechanism to the
complex word’s embeddings for partially masking the word.
But the dropout mechanism using BERT does not significantly
improve the performance compared with the masking strategy.
In this paper, we propose a complete LS system LSBert in-
cluding complex word identification, substitute generations, and
substitute ranking. We mainly add the following four works
compared with our previous version: (1) We propose a novel
CWI method by fine-tuning BERT. (2) In the steps of substitute
generation and substitute ranking, we add an additional strategy
to generate substitute candidates by randomly masking a certain
percentage of words in the original sentence, and add a new
feature paraphrase database (PPDB) to rank the substitutes.
(3) LSBert can simplify all complex words of one sentence
recursively. (4) We do more experiments to analyze LSBert and
the baselines.

III. LEXICAL SIMPLIFICATION SYSTEM

In this section, each step of our lexical simplification system
LSBert is presented in Fig. 2, which includes the following three
steps.

1[Online]. Available: https://words.bighugelabs.com

Fig. 2. Overview of the lexical simplification system LSBert.

Complex Word Identification (CWI): Identifying complex
words from one sentence has been studied for years, whose
goal is to select the words in a given sentence which should be
simplified [6], [26]. In our paper, CWI is treated as a sequence
labeling task. We fine-tune pretrained language modeling BERT
to predict the binary complexity of words. One word is chosen
as the complex word when its maximum prediction probability
is greater than the pre-defined threshold. To our knowledge, this
is the first work that focuses on pretrained language modeling
for the CWI task.

Substitute Generation (SG): Giving a sentence S and the
complex word w, SG aims to produce the substitute candidates
for the complex word w. We replace the complex word with
a [MASK] symbol and produce the substitute candidates for
the complex word based on BERT. In contrast to existing SG
methods, our method makes full use of the context of the
complex word.

Substitute Ranking (SR): Giving substitute candidates of the
complex word, the SR step is to rank the substitute candidates
that fit the context of the complex word. LSBert incorporates
Multiple features to rank the substitute candidates. In addition
to the language model, similarity, frequency features commonly
used in other LS methods, LSBert considers two additional
features: probability and PPDB (A Paraphrase Database for
Simplification) [12].

After obtaining the ranking of the candidates, we will decide
whether the complex word will be replaced by the highest-
ranking word by comparing the frequency or language model
features of the complex word and the highest-ranking word.
Every time LSBert tries to simplify one complex word that
owns the maximum prediction probability. After completing
one replacement, it will re-identify complex words of the new
sentence and recursively simplify another complex word until
there is no complex word in the sentence.

Authorized licensed use limited to: YANGZHOU UNIVERSITY. Downloaded on October 10,2021 at 08:21:49 UTC from IEEE Xplore.  Restrictions apply. 

https://words.bighugelabs.com


QIANG et al.: LSBERT: LEXICAL SIMPLIFICATION BASED ON BERT 3067

A. Fine-Tuning BERT for CWI

Let S = [w1, w2, . . ., wn] represents a sentence that contains
a sequence of words, and Y = [y1, y2, . . ., yn] represents the
labels corresponding to each word, wherewi stands for i-th word
in the sentence. CWI can be considered as a task of sequence
labeling task by assigning a label yi ∈{1,0} for each word, where
{1,0} indicates whether the word is complex or not.

BERT is a self-supervised method for pre-training a deep
transformer encoder, which only requires a large collection of
unlabeled text. BERT optimizes two training objectives: masked
language modeling (MLM) and next sentence prediction (NSP).
The MLM task is used to learn to fill the word at the masked
position that is sampled randomly in the input sentence. The
NSP task takes two sentences S1 and S2 as input, and predicts
whether S2 is the direct continuation of S1. The two sentences
are separated by a special [SEP] token. Additionally, a special
[CLS] token is added into the front of S1 and S2 to form the
input, where the target of [CLS] is whether S2 indeed follows
S1 in the corpus.

We treat CWI as a sequence labeling task, and fine-tune BERT
to predict the word complexity. We first add token [CLS] and
[SEP] at the beginning and ending of S. Before feeding S into
BERT, we transform it into a sequence of tokens through the
WordPiece tokenizer. Specifically, the representation of the top
layer in BERT is used as the representation for each token.
Because of WordPiece tokenizer, a word may be converted into
one or more tokens. We only use the representation of the first
token as an input for a classifier to fine-tune BERT.

In neuronal networks tasked with binary classification [4],
[6], sigmoid activation in the last layer and binary classification
entropy as the loss function are standardized. Here we add a
linear layer on the BERT outputs and use a sigmoid function to
get the predicted score ŷi for each token:

ŷi = σ(Wo × hi + bo) (1)

where σ(x) = 1
1+e−x is the sigmoid function, hi represents the

vector corresponding to the token wi, and Wo and bo are trained
parameters.

For each sentenceS, the final predicted score Ŷ that is consists
of the predicted score ŷi of each word by BERT. The loss of the
model is the binary classification entropy of prediction Ŷ against
gold label Y :

loss(S) = − 1

n

n∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)) (2)

where loss(S) represents the loss of the sentence S.
During the inference phase, the predicted value ŷi of each

word is obtained using 1. If ŷi is greater than 0.5, the word is
regarded as complex word; otherwise, the word is regarded as
simple word.

For example, the example “John composed0.55 these
verses0.76” is showed in Fig. 2. If the complexity threshold is
set to 0.5, the two words “composed” and “verses” will be the
complex words.

LSBert first simplifies the word “verses” that owns the high-
est p value. After completing the simplification process, the

complexity of each word in the sentence will be recalculated,
excluding words that have been simplified. Besides, we exclude
the simplification of entity words by performing named entity
identification.

B. Substitute Generation (SG) Based on BERT

Due to the fundamental nature of MLM, MLM is directly used
to generate substitutes for complex word. The complex word w
in a sentenceS is replaced by the special symbol “[MASK]”. We
can directly mask the complex word w of the sentence S and
get the probability distribution of the vocabulary p(·|S\{w})
corresponding to the masked word w. Finally, we choose the
top words from the probability distribution as the substitute
candidates.

If we directly let BERT predict the “[MASK]” symbol, BERT
is very likely to generate substitute candidates that are seman-
tically different from the complex word although it considers
the context. Assume that S replaced by “[MASK]” is denoted
as a new sequence S ′. Considering BERT is adept at dealing
with sentence pairs because of the NSP task, we concatenate
the original sequence S and S ′ as a sentence pair. We feed
the sentence pair (S, S ′) into BERT to predict the “[MASK]”
symbol. In such a way, the top words from the predictions
p(·|S, S ′\{w}) are related with both the complex word and the
context.

In our experiments, the top 10 words from p(·|S, S ′\{w}) are
selected as substitute candidates, excluding the morphological
derivations of w. Additionally, considering that the contextual
information of the complex word is used twice, we randomly
mask a certain percentage of words in S excluding w for appro-
priately reducing the impact of contextual information.

See Fig. 3 for an illustration. Given the sentence “the cat
perched on the mat” and the complex word “perched,” the
top three substitute candidates by our method are “sat, seated,
hopped”. The top three candidates by Glavaš [13] and REC-
LS [4] are “atop, overlooking, precariously,” and “put, lighted,
lay,” respectively. We see that the two methods cannot deal with
the problem of polysemy. Our method considering the context
can solve the problem very well.

C. Substitute Ranking (SR) Based on Multiple Features

Giving substitute candidates C = {c1, c2, . . ., ck} for the
complex word w, we propose a novel SR strategy that incorpo-
rates multiple features to rank the candidates, wherek is the num-
ber of substitute candidates. Previous work for this step is based
on the following features: frequency, similarity, and n-gram
language modeling, etc. In contrast to previous work, LSBert
additionally incorporates two high-quality features: probability
and PPDB.

Probability (rprob). The SG step obtains the probability
distribution of the vocabulary corresponding to the mask word.
Because SG of LSBert already incorporates the contextual in-
formation, the probability distribution is a crucial feature that
includes the information of both the context and the complex
word itself. Therefore, the probability of prediction is treated as
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Fig. 3. Substitute generation of LSBert for the complex word prediction, or cloze task. The input text is “the cat perched on the mat” with complex word
“perched”. [MASK], [CLS] and [SEP] are three special symbols in BERT, where [MASK] is used to mask the word, [CLS] is added in front of each input instance
and [SEP] is a special separator token.

a ranking feature. If the probability of one candidate is higher,
it will have a higher ranking.

Frequency (rfre). Frequency-based candidate ranking strat-
egy [13] is one of the most popular choices by lexical simpli-
fication and is quite effective. In general, the more frequency a
word is used, the most familiar it is to readers. We adopt the Zipf
scale created from the SUBTLEX lists [27], because some ex-
periments [15] revealed that word frequencies from this corpus
correlate with human judgments on simplicity than many other
more widely used corpora, such as Wikipedia. SUBTLEX2 is
composed of over six million sentences extracted from subtitles
of assorted movies. The Zipf frequency of a word is the base-10
logarithm of the number of times it appears per billion words.

Language model feature (rlang). The feature is used to
evaluate the fluency of one substitute in a given sentence. Instead
of traditional n-gram language modeling, we choose BERT to
compute the probability of a sentence or sequence of words. The
likelihood of a sentence cannot be directly computed, because
BERT is a non-Autoregressive language modeling. We adopt a
novel strategy to compute the likelihood of a sentence by BERT.

We use a symmetric window of size g around the com-
plex word as the context of the complex word. Let W =
w−g, . . ., w−1, w, w1, . . ., wg be the context of the original word
w. In our experiments, G is set to 5. We first replace the
original word w with the substitute candidate c. We then
mask each word wi of W from front to back and feed into
BERT to compute the cross-entropy loss of the mask word
using 3.

loss(wi) = −
∑
vi∈V

I{vi = wi} × log pBERT (vi = wi|W\wi
)

(3)

2[Online]. Available: http://subtlexus.lexique.org

where V is the set of words in the vocabulary, I{·} is the
indicator function, and pBERT is the BERT prediction distri-
bution (conditioned on the W excluding word wi).

The language loss of the sequence W is the average of all
words,

loss(W ) =
1

2g + 1

i=g∑
i=−g

loss(wi) (4)

Finally, all substitute candidates are ranked based on the cor-
responding sequence loss loss(W ). If the loss of the candidate
is lower, it will have a better ranking.

Similarity (rsim). The similarity between the complex word
and the substitute candidate is widely used as a feature for
SR. In general, word embedding models are used to obtain the
vector representation and the cosine similarity metric is chosen
to compute the similarity. Assume that the vector representations
of the complex word w and the substitute c are vw and vc,
respectively. The similarity value using cosine is computed by,

cos(vc, vw) =

∑g
j=1 v

j
cv

j
w√∑g

j=1(v
j
c)2 ×

√∑g
j=1(v

j
w)2

(5)

where g is the dimension of the vector in word embedding mod-
eling and vjc is the j-th dimension of the vector representation
vw of word w.

Here, we choose the fastText modeling3 as the pretrained
word embedding modeling. If the similarity value between the
candidate and the complex word is greater, the candidate will
have a higher ranking.

PPDB (rpp). Some LS methods generate substitute candidates
from PPDB or its subset SimplePPDB [28]. In contrast to ex-
isting work, we use PPDB as a feature to rank the substitute
candidates. PPDB is a collection of more than 100 million

3[Online]. Available: https://dl.fbaipublicfiles.com/fasttext/vectors-english/
crawl-300d-2M-subword.zip
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English paraphrase pairs [29]. These pairs were extracted by
using a bilingual pivoting technique, which assumes that two
English phrases that translate to the same foreign phrase have
the same meaning. We adopt a simple strategy for PPDB to rank
the candidates. We hope that the rankings of the substitutes in
PPDB and the substitutes not in PPDB maintain a certain gap. If
the ranking gap in these two cases is a large value, the influence
of other ranking features will be reduced. If the ranking gap
is a small value, the influence of this feature will be reduced.
Therefore, for each candidate ci in C, the ranking of ci is 1 if
the pair (w, ci) exists in PPDB. Otherwise, the ranking number
of ci is k/3, where k is the number of words in C.

Each of the features captures one aspect of the suitability of the
substitute candidates. LSBert computes five different rankings
(rfre, rsim, rlang , rprob, and rpp) according to their scores for
all substitutes, respectively. The final ranking for all substitutes
is computed as follows,

f_r = λ1rfre + λ2rprob + λ3rlang + λ4rsim + λ5rpp (6)

where f_r denotes the final ranking ofC, the weights λ1, λ2, λ3,
λ4 and λ5 balance the relative importance of the different fea-
tures, and λ1 + λ2 + λ3 + λ4 + λ5 = 1.

Finally, we choose the substitute with the highest ranking as
the top substitute for the complex word.

D. LSBert Algorithm

Following CWI, substitute generation, and substitute ranking
steps, the overall simplification algorithm LSBert is shown
in Algorithm 1 and Algorithm 2. Given the sentence S and
complexity threshold t, we first identify named entity by using
an entity identification system.4 We add the identified entities
into ignore_list, which means these words do not need to be
simplified.

In the CWI step of LSBert, we calculate the predicted scores
of all words inS excluding ignore_list (line 1). If the number of
complex words in the sentence s is larger than 0 (line 2), LSBert
will simplify the complex word w owning the high prediction
probability (line 3). LSBert calls substitute generation (line 4)
and substitute ranking (line 5) in turn. LSBert chooses the top
substitute (line 6). One important thing to notice is whether
LSBert performs the simplification only if the top substitute has
a higher frequency (frequency feature) or lower loss (language
modeling feature) than the original word (line 7). Here, we
choose the two features (frequency and language modeling)
that are calculated by statistical information from large corpora,
because the substitute with higher frequency or lower language
loss means that it has been well familiar to most people.

When LSBert performs the simplification, it will replace
w with top (line 8) and add the word top into ignore_list
(line 9). After completing the simplification of one word,
we will iteratively call LSBert (line 10 and line 12). If
the number of complex words in S equals 0, we will stop
calling LSBert (line 15).

4[Online]. Available: https://spacy.io/

Algorithm 1: Lexical Simplification Framework.
Input: Setence (S) and Complexity_threshold (t)
Output: Simplified sentence (SS)
1: ignore_list← Named _ Entity_Identification(S)
2: SS ← LSBert(S, t, ignore_list)

Algorithm 2: LSBert (S, t, ignore_list).
1: complex_words← CWI(S, t)-ignore_list
2: if number(complex_words) >0 then
3: w← head(complex_words)
4: subs← Substitute _ Generation(S,w)
5: subs← Substitute _ Ranking(subs)
6: top← head(subs)
7: if fre(top) >fre(w) or loss(top) <loss(w) then
8: SS ← Replace(S,w, top)
9: ignore_list.add(w)

10: LSBert(SS, t, ignore_list)
11: else
12: LSBert(S, t, ignore_list)
13: end if
14: else
15: return S
16: end if

IV. EXPERIMENTS

We evaluate each step of LSBert, and design experiments to
answer the following questions:

Q1. The effectiveness of CWI: Does the proposed CWI
approach of LSBert outperforms the baselines?

Q2. The effectiveness of substitute generation: Does the
substitute generation of LSBert outperform the state-of-the-art
competitors?

Q3. The effectiveness of the LS system: Does the effective-
ness of LSBert outperforms the full pipeline of the state-of-the-
art competitors?

A. Experiment Setup

Baselines. We choose the following baselines to comparison.
(1) Linguistic-based methods. Devlin [10] extracts synonyms

of complex words from WordNet. Yamamoto [18] is proposed
for Japanese based on dictionary definitions to extract substitute
candidates. Here, Yamamoto is adapted for English by using the
Merriam Dictionary to extract definitions of complex words.

(2) Rule-based methods. Biran [21] and Horn [23] perform
SG through parallel corpora EW and SEW. SimplePPDB [12]
performs SG with a filtered paraphrase database (PPDB).

(3) Embedding-based methods. Glavaš [13] performs SG
with typical word embeddings. Paetzold-CA [14] performs SG
with context-aware word embeddigns. PaetzoldNE [3] performs
SG with parallel corpora and context-aware word embeddings.
REC-LS [4] performs SG with typical word embeddings and
linguistic databases.
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(4) BERT-based methods. Here, we give multiple strategies to
perform SG by using BERT. BERT-mask: we directly mask the
complex word of the sentence and feed it into BERT. BERT:
we directly feed the original sentence into BERT to generate
substitute generates. BERT-dropout [25] applies the dropout
mechanism to the complex word’s embeddings for partially
masking the word. Compared with our proposed methods, the
input of the BERT-based methods is based on a single sentence.

(5) Our proposed methods. LSBertpre is our previous confer-
ence version [24]. LSBert is the proposed method in this paper.
Both LSBertpre and LSBert feed two sentences into BERT. For
SG step in LSBert, we randomly mask 50% of words in S
excluding w. In LSBert, λ1, λ2, λ3, λ4 and λ5 are set to 0.2.

The experimental results of Devlin, Yamamoto, Biran, Horn,
and SimplePPDB, Glavaš, Paetzold-CA, and Paetzold-NE are
from these two papers [3], [15]. For the REC-LS method, we
use the code proposed by the authors. BERT-dropout was
re-implemented based on the original paper. In all experi-
ments for BERT-based methods, we use BERT-Large, Uncased
(Whole Word Masking) pretrained on BooksCorpus and English
Wikipedia.5

Dataset. We choose the following datasets to evaluate LSBert
on three LS datasets and one text simplification dataset.

(1) We use three widely used lexical simplification datasets
(LexMTurk6 [23], BenchLS7 [14], NNSeval8 [15]) to do exper-
iments. The details of the three datasets are illustrated in this
paper [15]. Notice that, because these datasets already offer the
target words regarded as complex by human annotators, we do
not address complex word identification task in our evaluations
using the three datasets. These datasets contain instances com-
posed of a sentence, a target complex word, and a set of suitable
substitutes provided and ranked by humans for their simplicity.

(2) We use one widely used text simplification dataset
(WikiLarge) to simplify one sentence [30]. The train-
ing/development/test sets in WikiLarge have 296,402/2000/359
sentence pairs, respectively. WikiLarge is a set of automatically
aligned complex-simple sentence pairs from English Wikipedia
(EW) and Simple English Wikipedia (SEW). Its validation and
test sets are taken from Turkcorpus, where each original sentence
has 8 human simplifications created by Amazon Mechanical
Turk workers.

B. Evaluation of CWI

Because CWI is treated as an independent task, we will choose
the following benchmark and metric to evaluate.

Datasets: We use the English part of the CWI 2018 shared
task [6] that contains three datasets: News, WikiNews and
Wikipedia. The number of training, validation, and test sets in
the three datasets are 946/128/172, 651/85/105, and 388/53/61,
respectively.

5[Online]. Available: https://github.com/google-research/bert
6[Online]. Available: http://www.cs.pomona.edu/ dkauchak/simplification/

lex.mturk.14
7[Online]. Available: http://ghpaetzold.github.io/data/BenchLS.zip
8[Online]. Available: http://ghpaetzold.github.io/data/NNSeval.zip

TABLE I
EVALUATION RESULTS OF DIFFERENT CWI METHODS USING F1 METRIC

Baselines: For comparison, we choose two state-of-the-art
baselines. (1) CAMB [7] based on random forest achieves the
best result in CWI 2018 shared task. (2) SEQ [8] employs
a bi-directional LSTM, treating CWI as a sequence labeling
task. We use the code provided by the authors. (3) Our method
(LSBert): uses the BERT-base architecture which consists of 12
self-attention layers, and is fine-tuned on CWI 2018 shared task.
Adam with β1 = 0.9, β2 = 0.999, ε = 1e− 7, L2 weight decay
of 0 is used for fine-tuning.

Metric: The evaluation metric is the macro-averaged F1,
which is used in the 2018 CWI shared task.

The results are presented in Table I. Our method LSBert
achieves the best results compared with the two baselines on
all three datasets. Additionally, LSBert is simpler than CAMB,
because CAMB relies on 27 manual features and LSBert need
not supply any feature. Although SEQ also considers the context
of the target word, CAMB and LSBert outperform SEQ, because
the training instances of three datasets are far from enough
to meet the requirements of a neural network used by SEQ.
Combining the training instances of the three datasets as a
whole training dataset to train SEQ and LSBert, SEQ achieves
0.8763, 0.8540 and 0.8140 values, and LSBert achieves 0.8776,
0.8795 and 0.8528 values. We see that SEQ and LSBert are more
effective than those trained on a single training dataset.

C. Quantitative Evaluation

(1) Evaluation of Substitute Candidates
The following three widely used metrics are chosen for eval-

uation [14], [15], [31]. Suppose that there are m samples in the
test set, the complex word of the i-th sample is wi, the set of the
annotated substitutes for wi is pi, and the set of the generated
substitute candidates is qi. Here, #(pi) and #(qi) we use are
denoted as the number of words in pi and qi, respectively.

Precision (PRE): The proportion of generated substitute can-
didates that are in the annotated substitutes.

Precision =

∑m
i=1 #(pi ∩ qi)∑m

i=1 #qi
(7)

Recall (RE): The proportion of annotated substitutes that are
included in the generated substitute candidates.

Recall =

∑m
i=1 #(pi ∩ qi)∑m

i=1 #pi
(8)

F1: The harmonic mean between Precision and Recall.

F1 =
2× Precision× Recall

Precision + Recall
(9)

The results are shown in Table II. As can be seen, our
model LSBert obtains the highest Recall and F1 scores on
three datasets, largely outperforming the previous best baseline
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TABLE II
EVALUATION RESULTS OF SUBSTITUTE GENERATION ON THREE DATASETS

Paetzold-NE, increasing 37.4%, 19.1%, and 41.4% using the F1
metric. The baseline Paetzold-NE by combining the Newsela
parallel corpus and context-aware word embeddings obtains
better results on PRE than LSBert, because it uses a different
calculation method. If one candidate exists in the gold standard,
different morphological derivations of the candidate in substitute
candidates are all counted into the PRE metric. Because of
considering the context, the substitute candidates of BERT-based
methods are normally different words.

We note that BERT-based methods are not only able to outper-
form other systems on all datasets based on F1, but they also have
two clear practical advantages: (1) the only input information it
uses at run time is BERT without requiring linguistic database
and comparable corpus, (2) the substitute candidates based on
BERT do not require additional morphological transformation
for the replaced word.

For these baselines based on a single sentence (BERT-mask,
BERT and BERT-dropout), the gap between them is very small.
Compared with BERT based on a single sentence, our method
LSBertpre and LSBert have better results, which verify that our
strategy based on sentence pairs is more suitable for lexical
simplification. Compared with LSBertpre, LSBert randomly
masks a certain percentage of words in S. LSBert outperforms
LSBertpre, which verifies that the strategy is useful for LSBert.
In conclusion, the results clearly show that LSBert provides a
good balance of precision and recall.

(2) Evaluation of SG and SR
In this section, we evaluate the performance of various LS

systems combining SG and SR. We adopt the following two
well-known metrics used by these work [15], [23].

Suppose that there are m samples in the test set, the complex
word of the i-th sample is wi, the set of the annotated substitutes
for wi is pi, and the replacement of the original word is ti.

Precision (PR): The proportion with which the replacement
of the original word is either the original word itself or is in the
gold standard.

Precision =

∑m
i=1(I{ti = wi}‖I{ti ∈ pi})

m
(10)

where, if ti and wi are the same word, I{ti = wi} is set to 1,
else 0; if ti belonging to pi is set to 1, else 0.

TABLE III
THE EVALUATION RESULTS USING PRECISION (PR) AND ACCURACY (ACC) ON

THREE DATASETS

Accuracy (ACC): The proportion with which the replacement
of the original word is not the original word and is in the gold
standard.

Accuracy =

∑m
i=1 I{ti ∈ pi}

m
(11)

It can be seen from these two metrics that if no simplification
is carried out, the PR value is 1 and the ACC value is 0. If all
complex words are replaced by substitutes, the PRE and ACC
values have the same value.

The results are shown in Table III. Our method LSBert attains
the highest accuracy on three datasets, which has an average
increase of 29.8% over the former state-of-the-art baseline
(Paetzold-NE). It suggests that LSBert is the most proficient in
promoting simplicity. Paetzold-NE obtains higher than LSBert
on Precision on NNSeval, which also means that many complex
words are replaced by the original word itself, due to the shortage
of simplification rules in parallel corpora. REC-LS achieves the
best PRE and poor ACC, because it prefers the original word as
the substitute word.

In conclusion, although LSBert only uses raw text for pre-
trained BERT without using any resources, LSBert remains the
best lexical simplification method. The results are in accordance
with the conclusions of the results of substitute generation.

(3) Evaluation of LS System for Sentence Simplification
The evaluation of LS needs to be provided with the sentence

and the specified complex word. Here, we try to simplify one
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TABLE IV
COMPARISON OF TEXT SIMPLIFICATION METHODS ON WIKILARGE DATASET

sentence instead of one word of one sentence, and choose a
sentence simplification dataset (WikiLarge) for evaluation.

Since most LS methods only focused on one or two steps
(SG or SR) of LS, they cannot directly simplify one sentence.
Here, we choose two complete LS systems (Glavaš [13] and
REC-LS [4]) to comparison. In additional, we choose four state-
of-the-art text simplification (TS) methods DRESS-LS [30],
EditNTS [32], PBMT [33], and Access [34] as a reference. The
first three TS methods except PBMT are sequence-to-sequence
models and all need training data sets to learn. PBMT is an
unsupervised text simplification system based on a phrase-based
machine translation system. For LS methods, they only use
the test set to output the simplified sentences. For LSBert and
Rec-LS, the complexity threshold of CWI is 0.5. For Glavaš
method [13], it tries to simplify all content words (noun, verb,
adjective, or adverb) of one sentence.

Following previous work, two widely used metrics (SARI and
FRES) in text simplification are chosen [35], [36]. SARI [30] is
a text-simplification metric by comparing the output against the
simple and complex simplifications.9 Flesch reading ease score
(FRES) measures the readability of the output [37]. A higher
FRES represents the simpler output.

Table IV shows the results of all models on WikiLarge dataset.
Our model LSBert obtains a SARI score of 39.37 and a FRES
score of 77.07, even outperforming these three supervised TS
systems (DRESS-LS, EditNTS, and PBMT), which indicates
that the model has indeed learned to simplify the complex
sentences. Compared with LS methods Glavaš and REC-LS,
LSBert also achieves the best results. The two methods go to
two different extremes, in which Glavaš simplifies almost all
content words of one sentence and REC-LS prefers to save
the original word. On the FRES metric, we see that Glavaš
outperforms LSBert, which is also because it simplifies almost
all content words without caring for the equivalent meaning
with the original sentence. Compared with Access, our model is
highly competitive, because LSBert does not need a parallel
dataset to learn and only focuses on simplifying the words.
In conclusion, we see that LSBert outperforms previous LS
baselines, even some supervised TS baselines, which indicates
that our method is effective at creating simpler output.

D. Ablation Study of LSBert

To further analyze the advantages and the disadvantages of
LSBert, we make an ablation study of LSBert in this subsection.

9We used the implementation of SARI in [36].

TABLE V
ABLATION STUDY RESULTS OF THE RANKING FEATURES

TABLE VI
INFLUENCE OF DIFFERENT BERT MODELS

Fig. 4. Influence of the masked percentage of words in S.

(1) Influence of Ranking Features
To determine the importance of each ranking feature, we

make an ablation study by removing one feature in turn. The
results are presented in Table V. LSBert combining all five
features achieves the best results in most cases, which means
all features have a positive effect. LSBert removing frequency
feature achieves better results on PR metric, but it decreases
the values of ACC, because LSBert removing frequency feature
prefers to save the original word. These features have different
contributions to LSBert’s performance. For example, the PPDB
feature brings the least impact on the performance of LSBert
compared with the other features. In our experiments, all fea-
tures in LSBert are regarded as equally important, which may
not be the best option. In the future, we will try to combine
these features by using different weights to further improve the
performance of LSBert.

(2) Influence of Different BERT Models for Substitute
Generation

The pretrained modeling BERT plays one vital role in LSBert.
BERT has different versions based on the parameter scale and
training strategy. Here, we attempt to investigate the influence
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TABLE VII
THE EXAMPLES OF SUBSTITUTE CANDIDATES THAT DO NOT CONTAIN ONE VALID SUBSTITUTE PROVIDED BY HUMANS ON LEXMTURK. THE COMPLEX WORD OF

EACH SENTENCE IS SHOWN IN BOLD

of different BERT versions on the performance of LSBert. We
choose the following three BERT models:

(1) BERT-based, uncased (Base): 12-layer, 768-hidden, 12-
heads, 110 M parameters.

(2) BERT-large, uncased (Large): 24-layer, 1024-hidden, 16-
heads, 340 M parameters.

(3) BERT-large, uncased, Whole Word Masking (WWM):
24-layer, 1024-hidden, 16-heads, 340 M parameters. The above
two BERT models randomly select WordPiece tokens to mask.
Whole Word Masking always masks all of the tokens corre-
sponding to a word at once.

Table VI shows the results of the experiments based on
different BERT models on three datasets. From Table VI, we see
that the WWM model obtains the highest accuracy and precision
over the two other models. Besides, the Large model outperforms
the Base model. It can be concluded that a better BERT model
can help to improve the performance of LSBert. If a better BERT
model is available in the future, one can try to replace the BERT
model in this paper to further improve the performance of the
LS system.

(3) Influence of the Masked Percentage of Words in S
Compared with LSBertpre, LSBert randomly masks a certain

percentage of words in S for appropriately reducing the impact
of contextual information in substitute generation (SG). In this
subsection, we explore the influence of the masked percentage
of words in S for SG. When the masked percentage is zero, the
SG of LSBert is the same as the SG of LSBertpre. While fixing
the other parameters, we set the percentage to vary from 0% to
100%. We select F1 of SG as a metric.

Fig. 4 shows the results on three datasets. For SG step, when
increasing the percentage, the score of F1 first increases and
then declines. When the percentage is 50%, the performance
of LSBert reaches the best results, that is the set percentage of
substitute candidates in the paper. Therefore, we can see that the
masked percentage of words in S is useful for LSBert.

E. Qualitative Study

All of the above experiments are quantitative analyses of LS-
Bert. Here, we also qualitatively evaluate our system from three
aspects: substitute generation, substitute ranking, and sentence
simplification.

(1) The Analysis of Substitute Generation Results
When the number of substitute candidates is set to 10, the

proportion of LSBert that generates at least one valid substitute
candidate is 98.6% on LexMTurk dataset, where the number of
instances in Lexmturk is 500. Namely, LSBert only produces
no effective substitute in only 8 sentences. When the number
of generated candidates is 15, LSBert cannot generate any valid
candidates on only 4 sentences. When the number of generated
candidates is 30, only one sentence cannot generate a valid
candidate by LSBert. In this subsection, we will analyze the
8 sentences when the number of the candidates is set to 10 in
Table VII.

We see that LSBert can generate one or two valid substi-
tute candidates on these sentences (sent4, sent5, sent7, and
sent8), e.g., “senior->powerful,” “full-fledged->development,”
“kinetic->dynamic,” and “edited->altered”. Since the labels are
provided by humans, it is impossible to provide all suitable
substitutes for each word. LSBert fails to produce any valid
candidate word on the other sentences (sent1, sent2, sent3, and
sent6). When we analyze these wrong substitute candidates,
these substitutes can fit the context without concerning equiva-
lent meaning.

(2) The Analysis of Substitute Ranking Results
LSBert finds one or more suitable alternatives for almost all

samples, but the final system results do not always select the most
suitable candidate as the final substitute. In this subsection, we
will analyze the possible reasons for this question. Table VIII
shows some examples that LSBert cannot produce the right
substitute.
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TABLE VIII
THE EXAMPLES THAT THE FINAL SUBSTITUTE GENERATED BY LSBERT IS NOT FROM THE MANUAL LABELS. THE WORDS IN THE SUBSTITUTE RANKING

BELONGING TO THE LABELS ARE SHOWN IN BOLD

TABLE IX
THE SIMPLIFIED SENTENCES BY THREE DIFFERENT LS METHODS ON WIKILARGE DATASET. SUBSTITUTES ARE SHOWN IN BOLD

From the two sentences sent1 and sent3, we observe that the
SR step selects the best substitute, but LSBert still chooses the
original word. This is because the Zipf value of “divided” is 3.65
and the Zipf value of “classified” is 3.83, where the Zipf value is
from the frequency feature in SR. LSBert regards “classified” as
a simpler word compared with “divided”. It is the same reason
for sent3 in which the Zipf value of “noted” is 3.68 and the
Zipf value of “reported” is 4.18. Consequently, in sent1 and
sent3, the best substitutes of SR cannot be used as the final
substitutes.

The second case is that the best substitute for the SR step is not
from the labels provided by humans. In sent2 and sent4, LSBert
chooses “maintained” as a simpler for “retained” and “never” as
a simpler for “rarely”. We can find that the words “maintained”
and “never” are also suitable substitutes, but do not appear in the
labels. These experimental results suggest that LSBert achieves
better results that are not reflected in the results of Table II.

(3) The Analysis of Sentence Simplification Results
The above qualitative study for LSBert needs to provide

the complex word by humans. In this experiment, we try to
verify the results of LS methods on sentence simplification. We
also choose the two methods Glavaš and REC-LS to make a
comparison. Table IX shows some simplified examples from
the WikiLarge dataset. We draw the same conclusions from
these examples with the LS system for sentence simplification
(See Table IV). Glavaš tries to simplify every content word
in the sentence ignoring the aim of LS. LS aims to replace
complex words in a given sentence with simpler alternatives of
equivalent meaning. Rec-LS can make the right simplifications,
e.g., sentence 2. But, for sentence 1 and sentence 3, Rec-LS
outputs the original sentence. LSBert replaces complex words
with simpler alternatives and makes the most reasonable simpli-
fication. It verifies that LSBert is more fit for the LS task than the
baselines.
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V. CONCLUSION

We propose a novel BERT-based system LSBert for lexical
simplification (LS). The existing LS methods only consider the
context of the complex word on the last step (substitute ranking)
of LS. LSBert focuses on the context of the complex word on
all three steps of lexical simplification. To our best knowledge,
LSBert is the first work to utilize BERT during the steps of com-
plex word identification and substitute generation. Experimental
results have shown that LSBert achieves the best performance
on CWI and LS tasks. Compared with the state-of-the-art text
simplification methods, LSBert also gets very good results on
WikiLarge dataset. In the future, the pretrained BERT model can
be fine-tuned with just a simpler English corpus (e.g., Newsela),
and then we will use fine-tuned BERT for lexical simplification.
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